This function fits the model using maximum likelihood. It takes an optional pattern matrix \(P\) as in (6.51), which specifies which \(\beta _{ij}\)'s are zero.
An \(N \times P\) design matrix.
The \(N \times Q\) matrix of observations.
A \(Q \times L\) design matrix
An optional \(N \times P\) matrix of 0's and 1's indicating which elements of \(\beta\) are allowed to be nonzero.
A list with the following components:
The least-squares estimate of \(\beta\).
The \(P \times L\) matrix with the \(ij\)th element being the standard error of \(\hat{\beta}_{ij}\).
The \(P \times L\) matrix with the \(ij\)th element being the \(t\)-statistic based on \(\hat{\beta}_{ij}\).
The estimated covariance matrix of the \(\hat{\beta}_{ij}\)'s.
A \(p\)-dimensional vector of the degrees of freedom for the \(t\)-statistics, where the \(j\)th component contains the degrees of freedom for the \(j\)th column of \(\hat{\beta}\).
The \(Q \times Q\) matrix \(\hat{\Sigma}_z\).
The \(Q \times Q\) residual sum of squares and crossproducts matrix.
The dimension of the model, counting the nonzero \(\beta _{ij}\)'s and components of \(\Sigma _z\).
Mallow's \(C_p\) Statistic.
The dimension of the model, counting the nonzero \(\beta _{ij}\)'s and components of \(\Sigma_z\)
The corrected AIC criterion from (9.87) and (aic19)
The BIC criterion from (9.56).
data(mouths)
x <- cbind(1, mouths[, 5])
y <- mouths[, 1:4]
z <- cbind(1, c(-3, -1, 1, 3), c(-1, 1, 1, -1), c(-1, 3, -3, 1))
bothsidesmodel.mle(x, y, z, cbind(c(1, 1), 1, 0, 0))
#> $Beta
#> [,1] [,2] [,3] [,4]
#> [1,] 24.937126 0.8268033 0 0
#> [2,] -2.271745 -0.3504386 0 0
#>
#> $SE
#> [,1] [,2] [,3] [,4]
#> [1,] 0.5205837 0.09051471 0 0
#> [2,] 0.7935186 0.13797033 0 0
#>
#> $T
#> [,1] [,2] [,3] [,4]
#> [1,] 47.902240 9.134463 0 0
#> [2,] -2.862876 -2.539956 0 0
#>
#> $Covbeta
#> [,1] [,2] [,3] [,4]
#> [1,] 0.271007398 0.005297044 -0.273389373 -0.005343601
#> [2,] 0.005297044 0.008192913 -0.005343601 -0.008264923
#> [3,] -0.273389373 -0.005343601 0.629671752 0.012307409
#> [4,] -0.005343601 -0.008264923 0.012307409 0.019035812
#>
#> $df
#> [1] 23
#>
#> $SigmaR
#> Age8 Age10 Age12 Age14
#> Age8 5.119199 2.440902 3.610510 2.522243
#> Age10 2.440902 3.927948 2.717514 3.062349
#> Age12 3.610510 2.717514 5.979798 3.823461
#> Age14 2.522243 3.062349 3.823461 4.617984
#>
#> $Deviance
#> [1] 220.9863
#>
#> $Dim
#> [1] 14
#>
#> $AICc
#> [1] 258.7863
#>
#> $BIC
#> [1] 267.128
#>