Determines the denominators needed to calculate an unbiased estimator of \(\Sigma_R\).
bothsidesmodel.df(xx, n, pattern)
Result of \((X^T * X)\), where T denotes tranpose.
Number of rows in observation matrix given
An \(N \times P\) matrix of 0's and 1's indicating which elements of \(\beta\) are allowed to be nonzero.
A numeric
matrix of size \(N \times N\) containing
the degrees of freedom for the test.
# Find the DF for a likelihood ratio test statistic.
x <- cbind(
1, c(-2, -1, 0, 1, 2), c(2, -1, -2, -1, 2),
c(-1, 2, 0, -2, 1), c(1, -4, 6, -4, 1)
)
# or x <- cbind(1, poly(1:5, 4))
data(skulls)
x <- kronecker(x, rep(1, 30))
y <- skulls[, 1:4]
z <- diag(4)
pattern <- rbind(c(1, 1, 1, 1), 1, 0, 0, 0)
xx <- t(x) %*% x
bothsidesmodel.df(xx, nrow(y), pattern)
#> [,1] [,2] [,3] [,4]
#> [1,] 148 148 148 148
#> [2,] 148 148 148 148
#> [3,] 148 148 148 148
#> [4,] 148 148 148 148