Getting Started with dockitect
Source:vignettes/getting-started-with-dockitect.Rmd
getting-started-with-dockitect.Rmd
Introduction
dockitect
is an R package that simplifies Docker
containerization for R projects. It provides a programmatic,
pipe-friendly interface for creating, modifying, and validating Docker
configurations. This vignette introduces key concepts and features to
help you get started with containerizing your R projects.
For those new to Docker, here’s a quick overview of relevant terms:
- Docker: A platform that enables you to package applications with all their dependencies into standardized units called containers
- Docker image: A read-only template with instructions for creating a Docker container
- Docker container: A runnable instance of an image
- Dockerfile: A text file that contains instructions for building a Docker image
-
Dockerfile Instructions: Commands like
FROM
,RUN
,COPY
, etc., that define the image
Installation
You can install the development version of dockitect
from GitHub:
# install.packages("remotes")
remotes::install_github("coatless-rpkg/dockitect")
Access the package by loading it:
Package Overview
dockitect
uses a consistent naming convention to make
functions easy to discover:
-
dockerfile()
creates a Dockerfile object-
dfi_*()
functions add Dockerfile instructions (e.g.,dfi_from()
,dfi_run()
) -
dfm_*()
functions modify existing Dockerfiles (e.g.,dfm_add_line()
)
-
-
dockerignore()
creates a .dockerignore object-
di_*()
functions manage .dockerignore patterns (e.g.,di_add()
)
-
-
dk_*()
functions create Dockerfiles from templates or existing projects
Creating Basic Dockerfiles
We’ll next turn our attention to creating a Dockerfile programmatically. The process involves creating a Dockerfile object and adding various instructions to it through a series of pipe operations.
Creating a Dockerfile Object
Start by creating a new Dockerfile object:
# Create a new Dockerfile object
df <- dockerfile()
print(df)
#> Empty Dockerfile
Congratulations! You’ve created your first (empty) Dockerfile object. Now let’s add some instructions.
Adding Docker Instructions
To add instructions to the Dockerfile, use the dfi_*()
functions. For example, to set the base image:
# Create a Dockerfile for an R script
df <- dockerfile() |>
dfi_from("rocker/r-ver:4.4.0") # Base image with R 4.4.0
You can print the Dockerfile to see the added instruction:
print(df)
#> FROM rocker/r-ver:4.4.0
Usually, you’ll add multiple instructions to the Dockerfile. Let’s add a few more instructions to the Dockerfile so that we can run a script:
# Create a Dockerfile for an R script
df <- dockerfile() |>
dfi_from("rocker/r-ver:4.4.0") |> # Base image with R 4.4.0
dfi_label(maintainer = "user@example.com") |> # Add metadata
dfi_workdir("/app") |> # Set working directory
dfi_copy("analysis.R", "/app/") |> # Copy R script to container
dfi_cmd("Rscript /app/analysis.R") # Command to run when container starts
# Print the Dockerfile
print(df)
#> FROM rocker/r-ver:4.4.0
#> LABEL maintainer="user@example.com"
#> WORKDIR /app
#> COPY analysis.R /app/
#> CMD ["Rscript","/app/analysis.R"]
This example shows the most common Docker instructions:
- FROM: Specifies the base image (here using the Rocker Project’s R image)
- LABEL: Adds metadata to the image
- WORKDIR: Sets the working directory inside the container
- COPY: Copies files from your local system to the container
- CMD: Defines the default command to run when starting the container
Adding Multiple Commands
For RUN
instructions with multiple commands, you can
pass a character vector:
dockerfile() |>
dfi_from("rocker/r-ver:4.4.0") |>
dfi_run(c(
"apt-get update",
"apt-get install -y libcurl4-openssl-dev",
"apt-get clean"
))
#> FROM rocker/r-ver:4.4.0
#> RUN apt-get update && apt-get install -y libcurl4-openssl-dev && apt-get clean
Writing to a File
To save your Dockerfile:
# Write to the default "Dockerfile" file
write_dockerfile(df)
# Or specify a different filename
write_dockerfile(df, "path/to/Dockerfile")
By default, write_dockerfile()
formats multi-line
instructions for readability.
[!IMPORTANT] The multi-line instructions for is still a work-in-progress!
Using Templates
Creating Dockerfiles from scratch can be repetitive.
dockitect
provides templates for common R project types
that follow best practices.
Base R Template
This template creates a basic R environment:
# Create a basic R image
df_base <- dk_template_base(
r_version = "4.4.0", # Specify R version
additional_pkgs = c("dplyr", "ggplot2") # Add R packages
)
#>
#> ✔ Updated metadata database: 5.49 MB in 10 files.
#>
#> ℹ Updating metadata database
#> ✔ Updating metadata database ... done
#>
#> ! Failed to update system requirement mappings, will use cached mappings.
print(df_base)
#> FROM rocker/r-ver:4.4.0
#> LABEL maintainer="runner" description="Base R image for analysis"
#> WORKDIR /app
#> RUN R -e "install.packages(c('dplyr', 'ggplot2'), repos='https://cloud.r-project.org/')"
#> RUN mkdir -p /app/scripts /app/data /app/output
#> VOLUME /app/data
#> VOLUME /app/output
#> CMD ["R","--no-save"]
Shiny App Template
For Shiny web applications:
# Create a Shiny app image
df_shiny <- dk_template_shiny(
r_version = "4.4.0", # Specify R version
port = 3838, # Port for Shiny server
additional_pkgs = c("dplyr", "ggplot2") # Add R packages
)
print(df_shiny)
#> FROM rocker/shiny:4.4.0
#> LABEL maintainer="runner" description="Shiny application"
#> RUN apt-get update -y && apt-get install -y --no-install-recommends make zlib1g-dev && apt-get clean && rm -rf /var/lib/apt/lists/*
#> RUN R -e "install.packages(c('shiny', 'dplyr', 'ggplot2'), repos='https://cloud.r-project.org/')"
#> COPY . /srv/shiny-server/app
#> WORKDIR /srv/shiny-server/app
#> EXPOSE 3838
#> CMD ["shiny-server"]
Plumber API Template
For RESTful APIs with Plumber:
# Create a Plumber API image
df_plumber <- dk_template_plumber(
r_version = "4.4.0", # Specify R version
port = 8000, # Port for API
additional_pkgs = c("dplyr", "jsonlite") # Add R packages
)
print(df_plumber)
[!NOTE]
The
dk_template_plumber()
function template is still a work-in-progress!
Managing .dockerignore Files
A .dockerignore
file tells Docker which files to exclude
from the build context, improving build performance and reducing image
size.
Creating a .dockerignore File
In dockitect
, you can create a dockerignore
object and add patterns:
# Create a new .dockerignore object
di <- dockerignore()
# Add patterns to ignore
di <- di |>
di_add("*.Rdata") |> # Ignore R data files
di_add("data/*.csv") |> # Ignore CSV files in data directory
dk_template_ignore_git() # Add common Git patterns
print(di)
#> *.Rdata
#> data/*.csv
#> .git/
#> .gitignore
#> .gitattributes
#> .github/
#> .gitlab-ci.yml
Using Templates for Common Patterns
dockitect
includes templates for common ignore
patterns:
# Create a template for R projects
di_r <- dk_template_ignore_r()
print(di_r)
#> .Rproj.user/
#> .Rhistory
#> .RData
#> .Ruserdata
#> *.Rproj
#> *.rds
#> .lintr
#> *.Rcheck/
#> .Renviron
#> .Rprofile
#> renv/library/
#> renv/staging/
#> renv/python/
#> renv/local/
#> packrat/lib*/
#> packrat/src/
# Create a template for Git files
di_git <- dk_template_ignore_git()
print(di_git)
#> .git/
#> .gitignore
#> .gitattributes
#> .github/
#> .gitlab-ci.yml
Combining Templates
You can combine templates using c()
:
# Combine templates
di_combined <- c(
dk_template_ignore_git(), # Git files
dk_template_ignore_r() # R files
)
# Add custom patterns
di_combined <- di_add(di_combined, "my-custom-pattern")
print(di_combined)
#> .git/
#> .gitignore
#> .gitattributes
#> .github/
#> .gitlab-ci.yml
#> .Rproj.user/
#> .Rhistory
#> .RData
#> .Ruserdata
#> *.Rproj
#> *.rds
#> .lintr
#> *.Rcheck/
#> .Renviron
#> .Rprofile
#> renv/library/
#> renv/staging/
#> renv/python/
#> renv/local/
#> packrat/lib*/
#> packrat/src/
#> my-custom-pattern
Writing to a File
To save your .dockerignore:
# Write to .dockerignore file
write_dockerignore(di_combined)
Fin
This vignette introduced the basic functionality of
dockitect
for creating Dockerfile
files and
managing .dockerignore
files. These core features will help
you containerize your R projects more efficiently.
Future vignettes will cover:
- Advanced Dockerfile Manipulation: Modifying, grouping, and sorting instructions
- Generating Dockerfiles from Projects: Creating Dockerfiles from R sessions, renv.lock files, DESCRIPTION files, and R scripts
- Custom Templates: Creating and using your own Dockerfile templates
- Multi-stage Builds: Creating optimized images with multi-stage builds
- Best Practices: Guidelines for creating efficient and secure Docker images for R
As this package is in development, please refer back to the function documentation and visit the package website.